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Linkage Analysis in the Presence of Errors II: Marker-Locus Genotyping
Errors Modeled with Hypercomplex Recombination Fractions
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It is well known that genotyping errors lead to loss of power in gene-mapping studies and underestimation of the
strength of correlations between trait- and marker-locus genotypes. In two-point linkage analysis, these errors can
be absorbed in an inflated recombination-fraction estimate, leaving the test statistic quite robust. In multipoint
analysis, however, genotyping errors can easily result in false exclusion of the true location of a disease-predisposing
gene. In a companion article, we described a “complex-valued” extension of the recombination fraction to accom-
modate errors in the assignment of trait-locus genotypes, leading to a multipoint LOD score with the same robustness
to errors in trait-locus genotypes that is seen with the conventional two-point LOD score. Here, a further extension
of this model to “hypercomplex-valued” recombination fractions (hereafter referred to as “hypercomplex recom-
bination fractions”) is presented, to handle random and systematic sources of marker-locus genotyping errors. This
leads to a multipoint method (either “model-based” or “model-free”) with the same robustness to marker-locus
genotyping errors that is seen with conventional two-point analysis but with the advantage that multiple marker
loci can be used jointly to increase meiotic informativeness. The cost of this increased robustness is a decrease in
fine-scale resolution of the estimated map location of the trait locus, in comparison with traditional multipoint
analysis. This probability model further leads to algorithms for the estimation of the lower bounds for the error
rates for genomewide and locus-specific genotyping, based on the null-hypothesis distribution of the LOD-score
statistic in the presence of such errors. It is argued that those genome scans in which the LOD score is 0 for 150%
of the genome are likely to be characterized by high rates of genotyping errors in general.

Introduction

Marker-locus genotyping errors occur in every gene-
mapping project in every laboratory—sometimes with
an alarmingly high frequency (Lathrop et al. 1983; Lin-
coln and Lander 1992; Brzustowicz et al. 1993)—and
they are difficult to detect, unless they lead to Mendelian
inconsistencies in the data (Ehm et al. 1996). It is well
known that such errors can seriously deflate the power
and can lead to inflated recombination-fraction esti-
mates in two-point linkage analysis (Smith 1937; Ter-
williger et al. 1990; Buetow 1991). In linkage-disequi-
librium analysis, such errors may pose an even bigger
problem, since a single genotyping error can then destroy
evidence of many nonrecombinant meioses in the past
(see Terwilliger et al. 1997; de la Chapelle and Wright
1998; Göring et al. 1997; Terwilliger, in press). In mul-

Received December 11, 1998; accepted for publication December
16, 1999; electronically published March 6, 2000.

Address for correspondence and reprints: Dr. Joseph D. Terwilliger,
Columbia University, 1150 St. Nicholas Avenue, Unit 109 (Room 548),
New York, NY 10032. E-mail: jdt3@columbia.edu

a Current affiliation: Dept. of Genetics, Southwest Foundation for
Biomedical Research, San Antonio, TX.

� 2000 by The American Society of Human Genetics. All rights reserved.
0002-9297/2000/6603-0030$02.00

tipoint analysis, their effects can be further magnified as
the marker-locus density increases (Shields et al. 1991),
leading to increased potential for false exclusion of the
true disease locus. Multipoint analysis can likewise be-
come less robust as the number of loci analyzed jointly
increases when marker-locus parameters—such as allele
frequencies, linkage disequilibrium, locus order, and in-
terlocus genetic distances—are misspecified (Ott 1992;
Daw et al. 1998; Göring and Terwilliger 2000b). As
more and more marker loci are used, it is likely that
more—rather than fewer—genotyping errors will occur,
especially since the techniques used for automation of
such genotyping are new and are not yet well tested. In
addition, as marker loci become individually less poly-
morphic (e.g., single-nucleotide polymorphisms) and as
the individual pedigrees become smaller and smaller
(e.g., sib pairs or even singletons), genotyping errors
become more difficult to eliminate through detection of
Mendelian inconsistencies (Holmans and Craddock
1997).

Since marker-locus genotyping will never be com-
pletely error free, we propose a method for the com-
putation of pedigree likelihoods that allows for marker-
locus genotyping errors explicitly in the probability
model. As an extension of the model in the companion
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Figure 1 Probability model for misclassification of recombina-
tion status resulting from marker-locus genotyping errors under the
assumption of misclassification symmetry. The parental marker-locus
genotypes and the disease-locus genotypes in both parent and child
are assumed to be error free. P(R ) = v(1 � g) � (1 � v)g = v � g �obs

, when and .2vg 1 v v ! 0.5 g 1 0

Figure 2 Hypercomplex recombination fraction between a dis-
ease locus and a diallelic marker locus. The recombination fraction is
modeled in the hypercomplex number system, with a “real” compo-
nent for the true probability of recombination (v) between the loci and
with two “imaginary” components for misclassification of recombi-
nation status resulting from genotyping errors at the disease locus
( ) and the marker locus ( ). All three components are orthogonal.ei gj
The observed frequency of recombination is given by P(R ) =obs

, which is equal to the for-kVk = v � e � g � 2 (ve � vg � eg) � 4vegts

mula for adding three recombination fractions (v, e, and g) under the
assumption of no interference.

article (Göring and Terwilliger 2000a), additional
“imaginary” components will be added to the recom-
bination fraction, ultimately leading to definition of re-
combination fractions (with four components) in the
hypercomplex number system. Furthermore, we dem-
onstrate how this model allows for the estimation of
rates of genotyping errors in a genomewide and locus-
specific sense. Throughout this article, as in the com-
panion articles (Göring and Terwilliger 2000a, 2000b,
2000c), our use of the terms “frequency” and “prob-
ability” matches that of Walley (1991) and Jaynes
(1996).

Probability Model for Marker-Locus Genotyping
Errors under Misclassification Symmetry

Let us assume for now that the two types of misclassi-
fication of recombination status that result from marker-
locus genotyping errors—misclassification of a true re-
combinant as a nonrecombinant and misclassification of
a true nonrecombinant as a recombinant—have the same
probability, denoted as ,g = P(N FR ) = P(R FN )obs true obs true

which is analogous to the parameter introduced in thee

companion article (Göring and Terwilliger 2000a). If one
assumes, for the moment, that there is an absence of
errors in the disease-locus genotypes, then the proba-
bility model shown in figure 1 obtains. The expected
frequency of an observed recombinant can be seen to be

. WhenˆE[v] = v(1 � g) � (1 � v)g = v � g � 2vg g 1 0
and , the estimate of the recombination fractionv ! 0.5
is thus biased upward. If one also allows for misclassi-
fication of the recombination status as a result of errors
in the trait-locus genotype, then the definition of the
recombination fraction can be expanded to V = v �

, represented as a vector in the hypercomplexei � gj
number system . A graphical representation of is1H V

given in figure 2. The real-valued frequency of an ap-
parent recombination event is equal to the length of the
vector , which is defined—according to the theta-sum-V

ming (“ts”) mode (see the companion article by Göring
and Terwilliger [2000a])—as P(R ) = kVk = v � e �obs ts

, which is analogous to theg � 2 (ve � vg � eg) � 4veg

formula for adding three recombination fractions (v, ,e
and g) under the assumption of no interference (Haldane
1919).

The vector in hypercomplex map-distance space cor-
responding to would be ,V X(V) = x(v) � x(e)i � x(g)j
with . Here, x( )kX(V)k = x(v) � x(e) � x(g) = x(kVk )ds ts

represents a mapping function such as the Haldane map
function (Haldane 1919), and “ds” denotes “distance
summing” (for details, see the companion article by Gö-
ring and Terwilliger 2000a). In what is often referred
to as a “taxicab geometry” (Krause 1975), the ds metric
in our hypercomplex three-space is defined as ds =

(i.e., the distance between twoFdxF � FdyF � FdzF
points is the sum of the lengths of the three orthogonal
vectors rather than the Euclidean distance (for an ex-
planation of taxicab geometry, see the companion ar-
ticle by Göring and Terwilliger [2000a]). The set of all
points, , equidistant from a marker[XF kXk = x(kVk )]ds ts

locus, is represented by a taxicab sphere, which looks
like the surface of a cube in Euclidean geometry. Since
both and , the set is restricted to be thee � 0 g � 0
surface of one quadrant of a taxicab sphere, as is shown
in figure 3.
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Figure 3 Presentation of hypercomplex recombination fraction
in hypercomplex map-distance space. The set of all points,

, equidistant from a marker locus, is represented[XF kXk = x(kVk )]ds ts

by a taxicab sphere (with the marker locus at its center). In Euclidean
geometry, this sphere looks like the surface of a cube. Since ande � 0

, the set is restricted to one quadrant of the surface of a taxicabg � 0
sphere.

Figure 4 Multiple two-point and multipoint linkage analysis
with hypercomplex recombination fractions. Multiple two-point link-
age analysis (A) and multipoint linkage analysis (B) are shown. Each
locus has a unique error parameter. Although these parameters are
mutually orthogonal in reality, they are drawn so that they are pointing
above or below the real line—that is, the chromosome—for simplicity.
Intermarker recombination fractions, which would also be overesti-
mated, are not indicated, to avoid confusion. In this example,

(i.e., more recombinants are observed between D andkV k 1 kV kD2 ts D3 ts

M2, even though M2 is actually closer to D than M3, as a result of the
error vector being larger for M2 than for M3).

Multiple Two-Point and Multipoint Linkage Analysis
with Hypercomplex Recombination Fractions

In joint analysis of multiple marker loci versus a trait
locus, each marker locus, m, will have a unique and
mutually orthogonal misclassification parameter, gm.
The trait-locus misclassification parameter, e, is fixed to
be identical for all marker loci, since e is a parameter of
the trait locus alone. Because it is difficult to visualize
the error vectors in multidimensional space, for the pur-
poses of the following discussion, all figures are drawn
so that the gm component of the hypercomplex recom-
bination fraction for each marker locus is shown as a
vector pointing downward from the real line—that is,
the chromosome—whereas the e component for the trait
locus is shown as a vector pointing upward from the
real line. In actuality, however, all such vectors are mu-
tually orthogonal, and apparent recombination fractions
between adjacent marker loci can be much more inflated
than these simplified figures might imply. Furthermore,
the hypercomplex recombination-fraction vector, , willV

be drawn as a diagonal line connecting the ends of vec-
tors and gj, to emphasize that refers to the cor-ei V

relation between inferred trait-locus genotypes and
observed marker-locus genotypes, even though its mag-
nitude is defined in a non-Euclidean, taxicab metric
space.

Multiple two-point analysis (Morton 1988; Morton
and Andrews 1989; Shields et al. 1991) of a disease
locus (D) against a set of marker loci (M1, M2, and M3)
can then be visualized as shown in figure 4A. In the
illustrated example, , even though thekV k 1 kV kD2 ts D3 ts

true genetic distance between D and M2 (vD2) is smaller
than that between D and M3 (vD3). This apparent dis-

crepancy is the result of an excess of errors in the ob-
served genotypes of M2, relative to M3, in this example.
When one allows for marker- and disease-locus errors
in this manner, the only restriction imposed on the re-
combination-fraction estimates in multiple two-point
analysis is that the magnitude of must be at leastVDm

as large as the magnitude of , since the gm com-v � eiDm

ponent must be non-negative because it is a probability.
This constraint is more relaxed than that which is im-
posed when one does not allow for marker-locus ge-
notyping errors.

The frequency of the apparent recombination be-
tween observed marker-locus genotypes at two marker
loci (e.g., M1 and M2) can be computed in an analogous
manner, with kV k = v � g � g � 2(v g � v g �12 ts 12 1 2 12 1 12 2

andg g ) � 4v g g kX k = x(v ) � x(g ) � x(g ) =1 2 12 1 2 12 ds 12 1 2

. Therefore, conditional on a well-known ge-x(kV k )12 ts

netic marker-locus map, the observed marker-marker
recombination frequencies can contribute information
about the marker-locus-specific error rates. (For sim-
plicity of presentation, the marker-marker recombina-
tion probabilities were omitted in fig. 4.)

Multipoint analysis (Lathrop et al. 1984; Lander and
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Figure 5 Example of multipoint likelihood computation with
misclassification vectors. For simplicity, genotype errors resulting in
misclassification of the meiotic-recombination status are allowed to
occur only at the disease locus D and the marker locus M2; however,
error components could be included for the other marker loci, by
means of direct analogy. There are possibilities (in terms of true22 = 4
recombination and misclassification) for the joint underlying true re-
combination status that could explain the observed meiotic outcome.
The sum of the likelihoods of all four possibilities gives the likelihood
of this meiotic observation.

Green 1987) of a disease locus against several marker
loci can be performed with the use of the probability
model shown in figure 4B. An example of how one
would compute the likelihood in the presence of these
misclassification parameters is given in figure 5. For sim-
plicity, we only consider errors at D and M2 (errors in
the other loci can be accommodated by means of direct
analogy). In the meiosis used as an example, an appar-
ent recombination was observed in interval M1-D, no
recombination was observed in interval D-M2, and re-
combination was observed between M2 and M3. Since
the genotypes at both D and M2 are potentially erro-
neous, there are four (=22) possible explanations for the
observed meiotic outcome, in terms of recombination
and misclassification. These four possibilities and their
likelihoods are indicated in figure 5. Their sum would
give the overall likelihood for this observed meiosis,
allowing for errors at both D and M2. This procedure
could be extended to allow for errors at all loci jointly
(for four loci, as shown here, there would be 42 = 16
possible explanations for an observed meiotic outcome).
All of the multilocus recombination information could
then be used jointly for estimation of the locus-specific
error rates.

In practice, the error rates at the individual marker
and trait loci are typically not of primary interest, since
the main goal is to estimate the chromosomal location
of the disease-predisposing gene. The magnitudes of the
marker-locus-specific values of gm are useful, however,
for identification of marker loci that either have high
rates of genotyping errors (those marker loci could sub-
sequently be either rechecked or censored from the anal-
ysis) or are mapped to the wrong chromosomal location
(since such errors in the marker-locus map are highly
confounded with these error vectors; see Göring and
Terwilliger [2000b]).

Asymmetry in Misclassification of Recombination
Status

It was assumed above that the two types of misclassi-
fication of recombination status have equal probabil-
ity—that is, . In a com-g = P(N FR ) = P(R FN )obs true obs true

panion article (Göring and Terwilliger 2000a), a similar
assumption was made for meiotic misclassification re-
sulting from errors at the trait locus. This assumption
is reasonable, as long as either the locus with the errors
is diallelic or the parental genotypes are assumed to be
known with accuracy, in the absence of any systematic
types of bias (see Ott 1977). For diallelic loci, only a
single parental genotype (D/� or 1/2) is informative for
linkage, which leads to the symmetry that any possible
error in the genotyping of offspring would convert a
recombinant to a nonrecombinant—and vice versa—
with equal probability. (Genotyping errors are indepen-

dent of the true recombination status, since such errors
occur at each locus independently.) When an error oc-
curs in the genotyping of a parent, this either results in
censoring of the truly informative meioses from the anal-
ysis or leads to inclusion of truly uninformative meioses,
which are expected to appear as recombinants 50% of
the time—irrespective of whether recombination oc-
curred in reality. Neither effect would lead to asymmetry
in the two types of misclassification. If the parental ge-
notype is known with accuracy, then the same argument
also holds for a marker locus with more than two alleles,
since then only the alleles (two at most) observed in the
typed parent could have been transmitted to the off-
spring, with all other alleles leading to a Mendelian in-
consistency. When parents are not genotyped, however,
the symmetry between the two types of misclassification
no longer holds for a multiallelic marker locus. In that
situation, errors in the genotyping of offspring would
influence the likelihood of each possible parental ge-
notype, such that a larger proportion of all possible ge-
notyping errors would lead to misclassification of a true
nonrecombinant rather than of a true recombinant.

Let us allow for separate probabilities for the two
types of misclassification in recombination status, by
defining and . The fre-h = P(R FN ) n = P(N FR )obs true obs true

quency of an observed recombination event (when it is
assumed, for the moment, that the disease-locus geno-
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Figure 6 Probability model allowing for misclassification of the recombination status as a result of errors at both the disease locus and
a multiallelic marker locus. The real-valued probability of recombination is given by P(R ) = kVk = vne � v (1 � n) (1 � e) � (1 � v) h (1 �obs ts

, which is obtained by calculating the sum of the probabilities of the relevant paths and bye) � (1 � v) (1 � h) e = kv � ei � gjk � t (1 � 2e)ts

substituting and .g = (h � n) /2 t = (h � n) /2

Figure 7 Hypercomplex recombination fraction between a dis-
ease locus and a multiallelic marker locus. The probabilities of the
two types of misclassification in recombination status (mistaking either
a true nonrecombinant for a recombinant or a true recombinant for
a nonrecombinant) are sometimes unequal, for reasons outlined in the
text. Two separate imaginary components (g and t) are therefore added
to the hypercomplex recombination fraction, with both imaginary vec-
tors originating from the position of the marker locus. The recom-
bination fraction is then defined as . The real-val-V = v � ei � gj � tk
ued probability of recombination is given by P(R ) = kVk = kv �obs ts

(see fig. 6 for derivation).ei � gjk � t (1 � 2e)ts

type is known with certainty) would then be P(R ) =obs

. Reparameteri-v (1 � n) � (1 � v) h = v � h � v (h � n)
zation, by generalization of the previously introduced
misclassification parameter to and by def-g = (h � n)/2
inition of , leads tot = (h � n)/2 P (R ) = (v � g �obs

. When misclassification symmetry holds (i.e.,2vg) � t

), then and , and this equation re-h = n g = h = n t = 0
duces to the relationship obtained above—namely, that

.P (R ) = v � g � 2vgobs

Figure 6 summarizes the probability model that al-
lows for errors in both the assigned disease-locus geno-
types and the observed marker-locus genotypes. t can
be modeled as an additional error component in a four-
dimensional hypercomplex recombination fraction, de-
noted as . As shown in figure 7, theV = v � ei � gj � tk
two marker-locus vectors, and , arise from the samegj tk
marker locus, whereas the disease-locus error vector,

, arises orthogonally from the disease locus. The pre-ei
viously defined ts and ds modes are not directly appli-
cable, and we need to define a new metric (referred to
here as the “ts” mode) for the frequency of apparent
recombination between assigned genotypes at the dis-
ease loci and the marker loci. The magnitude of the
observed recombination fraction would be P(R ) =obs

kVk = kv � ei � gjk � t(1 � 2e) = v � e � g � 2(ve �ts ts

(see fig. 6). If eithervg � eg) � 4(veg) � t(1 � 2e) t = 0
or , then the ts mode is exactly identical to thee = 0.5

familiar ts mode and, thus, represents a generalization
of the ts mode to allow for asymmetry in the two types
of misclassification in recombination status.

For the case of random errors in the genotyping of
multiallelic marker loci, since , which can leadt 1 0 h 1 n
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to recombination-fraction estimates 10.5 under the null
hypothesis of no linkage, since ˆE[vFv = 0.5] = 0.5 �

. As shown below, this can cause problems witht(1 � 2e)
the null-hypothesis distribution of the LOD score. How-
ever, there is also the possibility of systematic genotyp-
ing errors—that is, when —which may havet ! 0 n 1 h

the opposite effect. An example where this might apply
would be if, for some technical reason, there was a
propensity to misread heterozygotes as homozygotes
(see Lindqvist et al. [1996]), which may occur with dial-
lelic as well as with multiallelic marker loci. This ap-
parent increase in marker-locus homozygosity among
sets of affected sibs might cause the illusion that such
affected sib pairs received these marker-locus alleles
identical by descent (IBD) from their parents. When
ascertainment is primarily of affected relatives, this may
give rise to false-positive findings of linkage. If there
were random ascertainment with respect to phenotype
or if equal numbers of affected and unaffected siblings
were included in the analysis, then such systematic bi-
ases would be less likely. Affecteds-only linkage analysis
will therefore tend to magnify the effects of such sys-
tematic errors. Another potential source of systematic
bias in favor of nonrecombinants arises when genotyp-
ing is done with knowledge of the phenotypes, such that
investigators might resolve ambiguous genotypes in
such a way as to minimize recombinants in the data set.
The proposed model intrinsically allows for this pos-
sibility as well, since it allows t to take negative values.
Other effects of such ascertainment biases, which are
related to errors in parameters of the marker loci and
their map, are discussed elsewhere (Göring and Ter-
williger 2000b; Terwilliger and Göring, in press).

Effects of Marker-Locus Genotyping Errors on Linkage
Analysis

In this section, we focus on the effects of marker-locus
genotyping errors on linkage analysis. It has been shown
that linkage analysis is impacted not only when it is done
under the alternative hypothesis of linkage (H1), which
is well known (Smith 1937; Terwilliger et al. 1990; Bue-
tow 1991; Shields et al. 1991; Lincoln and Lander 1992;
Goldstein et al. 1997), but also under the null hypothesis
of no linkage (H0) between the disease locus and the
marker loci. Under H0, if (i.e., there are randomt 1 0
genotyping errors), then the LOD score is expected to
be maximized at 0 more than 50% of the time, and
positive LOD scores are reduced toward 0, making the
behavior of the LOD score conservative relative to the-
oretical expectations (see Nordheim 1984; Tai and Chen
1989). If (i.e., there are systematic genotyping er-t ! 0
rors), then the LOD score behaves anticonservatively,
with a propensity for false-positive findings. Counter-
intuitively, the larger the sample size, the greater are the

effects of marker-locus genotyping errors, because one
has more “power” to detect the error-induced deviation
from the expected 50% frequency of observed re-
combinations.

To examine, in more detail, the effects of marker-
locus genotyping errors on linkage analysis, let us—for
reasons of simplicity—focus on the situation in which
recombinant and nonrecombinant meioses can be
counted. In this situation, there is a one-to-one corre-
spondence between the LOD score

N R N�RZ = log max v (1 � v) /0.510 [ ]
v

and the statistic , where N and R�L = (N � R)/ N � R
represent the number of nonrecombinant and recom-
binant meioses, respectively, that were observed in a
given data set. L is used here, rather than the LOD
score, since L has a simpler algebraic representation.
To single out the effects of marker-locus genotyping
errors, genotype-assignment errors at the trait locus
have been ignored throughout this section (i.e., e =
); however, the results can be generalized to include0

those errors as well. Under H0 ( ), when an ab-v = 0.5
sence of genotyping errors of any kind is assumed,

. The mean and the variance of L areL ∼ N(0, 1)
given as and Var�E [L] = N � R[1 � 2P(R )] [L] =obs

, as derived in the Appendix. By4P(R )[1 � P(R )]obs obs

substituting the value that takes for selectedP(R )obs

parameter values (sample size , v, g, and t), theN � R
mean and the variance of L can be derived as a func-
tion of these parameters. The power under the alter-
native hypothesis (or the P value under the null hy-
pothesis) can be computed as

�c � N � R[1 � 2P(R )]obs
( )P L � c =1 � F{ }�4P(R )[1 � 2P(R )]obs obs

for a chosen cutoff value c, where F( ) is the cumulative
distribution function for a standard normal random
variable (see Appendix).

Let us focus on the effects of marker-locus genotyping
errors under the null hypothesis of no linkage ( ),v = 0.5
since this will be shown to lead to a simple approach
for estimation of error rates from the results of a ge-
nome scan. When the two types of misclassifications
have equal probability, andt = 0 P(R ) = 0.5 � g �obs

, which is independent of g and t. Thus,2(0.5)g = 0.5
, and , andP(R ) = P(R ) = 0.5 E[L] = 0 Var [L] = 1obs true

the statistic behaves appropriately under H0. However,
when the symmetry arguments no longer apply, t ( 0
and .P (R ) = 0.5 � g � 2 (0.5) g � t = 0.5 � t ( 0.5obs

Thus, , ,�P(R ) ( P(R ) E[L] = �2t N � R ( 0obs true
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, and the LOD-score statistic no2Var [L] = 1 � 4t ! 1
longer behaves properly under H0. (If one wanted to
allow for trait-locus errors as well, one would need to
replace t with throughout.) Notice that g doest(1 � 2e)
not appear in these expressions. Therefore, it is only
through t that marker-locus genotyping errors affect
linkage analysis under H0.

Figure 8A shows the point mass at 0, computed as

�0 � N � R[1 � 2P(R )]obs
F{ }�4P(R )[1 � 2P(R )]obs obs

24t
( )= F N � R ,� 2[ ]1 � 4t

as a function of t for different sample sizes. For non-
systematic genotyping errors on multiallelic marker loci,

. As t increases in magnitude, so does the pointt � 0
mass at 0, which is expected to be 0.5 in the absence
of genotype errors. The larger the sample size, ,N � R
the more pronounced the effect: For and a sam-t = 0.01
ple size of 500 meioses—a fairly small data set for the
mapping of complex traits—the point mass at 0 is 10.6;
however, in a very large study with a sample size of
5,000 meioses, the point mass at 0 is 10.9! Figure 8B
shows the P values corresponding to a LOD score of
1—that is, —where Z is the LOD score, againP (Z � 1)
as a function of t for different sample sizes. The larger
the value of t, the more conservative is the behavior of
the LOD score in comparison with its theoretical dis-
tribution. As mentioned above, the effect is more pro-
nounced in large sample sizes. Although a LOD score
of 1 asymptotically has a theoretical P value of ∼.016
in the absence of marker-locus genotyping errors, it is
shown here that the P value would be !.005 when

in a sample size of 500 meioses.t = 0.01
When marker-locus genotyping errors are systematic,

it may be the case that . This has the opposite effect,t ! 0
leading to a propensity for false-positive findings, as also
shown in figure 8. When in 500 meioses, thet = �0.01
point mass at 0 is decreased to !0.4 , and the P value
of a LOD score of 1 is inflated by more than three-
fold from its theoretical expectation. As previously
mentioned, the impact is greater for larger sample
sizes—that is, the point mass at 0 is !0.1 and the P
value of a LOD score of 1 is inflated by more than 15-
fold when . The reason why the effect isN � R = 5,000
stronger for larger sample sizes can be seen in the ex-
pressions of the mean and variance of L. Only the mean,
as the “directional component” of the statistic, depends
on the sample size, whereas the variance does not. In
summary, for a multiallelic marker locus, there will tend

to be 150% recombinants observed in the presence of
marker-locus genotyping errors, with the assumption of
the absence of a systematic bias, and the null-hypothesis
behavior of the LOD-score statistic will thus be over-
conservative, with increased point mass at 0 and fewer
positive LOD scores of any magnitude than would be
expected in the absence of genotyping errors. If there
were systematic biases and if , then the situationt ! 0
might be more critical, since there would be a propensity
for false-positive findings.

Of course, marker-locus genotyping errors also affect
linkage analysis under the alternative hypothesis of link-
age ( [Smith 1937; Terwilliger et al. 1990; Bue-v ! 0.5
tow 1991; Shields et al. 1991; Lincoln and Lander 1992;
Goldstein et al. 1997]). The frequency of apparent re-
combination is then given by P (R ) = v � g � 2vg �obs

, which is a function of both g andt = v � g (1 � 2v) � t

t, in contrast with the situation under H0, where
depends only on t, as shown above. For thisP(R )obs

reason, marker-locus genotyping errors will have an ef-
fect on power even if the two types of misclassification
have equal probability, as is typically the case for dial-
lelic marker loci. Note that the impact of g depends on
the true recombination fraction, whereas that of t does
not. Table 1 gives the power for LOD-score thresholds
of 1, 2, and 3, for a sample size of 500 countable mei-
oses, for several different combinations of g and t.

Estimation of t

As previously indicated, the distribution of the LOD
score under the null hypothesis is affected by genotyping
errors, when the errors lead to an asymmetry of the
misclassification rates (i.e., ). Although two-pointt � 0
linkage analysis typically does not allow for (or benefit
from) separation of an observed recombination-fraction
estimate into its various components (i.e., the true re-
combination fraction and the various misclassification
parameters), estimates of t may be obtained from the
LOD scores obtained in a genome scan. Furthermore,
the marker-locus-specific error rate can be estimated
from the null-hypothesis distribution of the LOD-score
statistic, via simulation.

For marker loci with multiple alleles, random geno-
typing errors can cause the null-hypothesis expectation
of the recombination-fraction estimate to be raised from
0.5 to . If one does not constrain (i.e.,ˆ0.5 � t v = 0.5

), then one can compute the average value ofv � [0, 1]
this recombination-fraction estimate over all M marker
loci analyzed in two-point analysis in a genome scan.
A crude estimator of t would be given as t̃ =

. An analogous estimator of t would1 M ˆ� (v � 0.5)m=1 mM

be provided by the genomewide average value of ê �
, in “complex” multipoint analysis (Göring and Ter-0.5

williger 2000a) performed under the assumptions that
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Figure 8 Effects of marker-locus genotyping errors in the absence of linkage. A, point mass at 0; B,P value corresponding to a LOD
score of 1 in the presence of misclassification, as a function of t and the sample size (given as the number of countable meioses).

and . Note that these are estimates of theg = 0 t = 0
genomewide average value of t, which may be estimated
to be 0, even in the presence of substantial locus-specific
rates of error.

More information about t can be obtained from the
full distribution of either or the LOD score (or, equiv-v̂

alently, from the statistic L), for all marker loci, re-

gardless of whether v is constrained to �0.5. If one
considers the results of a sparse genome scan with two-
point linkage analysis, one would expect ∼1.6% of the
marker loci to show a LOD score 11 (see above),
whereas the number could be significantly lower in the
presence of genotyping errors (systematic bias may lead
to the opposite effect). One could estimate the ge-



Göring and Terwilliger: “Hypercomplex” Linkage Analysis 1115

Table 1

Effect of Nonsystematic Marker-Locus Genotyping Errors on the
Power of a Linkage Study

POWER FOR LOD SCORE AT

g t = 0 t = g/2 t = g

Threshold 1:
0 .815 .815 .815
.01 .798 .729 .649
.02 .781 .627 .449
.03 .762 .515 .262
.04 .743 .402 .126
.05 .722 .297 .049

Threshold 2:
0 .500 .500 .500
.01 .476 .387 .305
.02 .451 .284 .154
.03 .427 .196 .063
.04 .404 .127 .021
.05 .380 .077 .006

Threshold 3:
0 .246 .246 .246
.01 .227 .165 .116
.02 .209 .104 .044
.03 .192 .062 .014
.04 .176 .034 .003
.05 .160 .017 .001

NOTE.—The recombination fraction was chosen such that the power
for a LOD-score threshold of 2, with the use of 500 countable meioses,
is 0.5 in the absence of any marker-locus genotyping errors. Only
random genotyping errors are considered here—that is, (by def-t � 0
inition, ).FtF � g

nomewide average value of t by fitting the distribution
of observed LOD scores to the form of the distribution
described above, as a function of t. If significantly 150%
of the marker loci show a maximum LOD score of 0
and if there is a significant contraction of the distri-
bution toward 0, then a high rate of error in genotyping
may be indicated. This method also assumes that t has
the same value for all marker loci in the genome, and,
thus, it provides only a crude genomewide estimate of
the error rates. In this case, one could compute the test
statistic , where the likelihood un-ˆT = 2 ln [L(t)/L(t = 0)]
der either hypothesis is computed from the density func-
tion of the statistic under H0 as a function of t (see the
Appendix).

An even better approach would be to estimate the
locus-specific error rates by means of simulation. If one
simulates error-free genotypes for a fully informative
marker locus in the data set, independent of the ob-
served genotyping data, then one can then perform link-
age analysis between the simulated marker locus and
each of the genotyped marker loci spanning the genome.
With a large number of replicates, one can estimate the
distribution of the LOD scores and the value of t in-
dependently for each genotyped marker locus, with use
of either of the approaches described above. This pro-

vides a locus-specific test of the asymmetry in the ge-
notyping error rate. This will not allow estimation of
g, however, since the null-hypothesis distribution is only
a function of t (the overall genotyping error rate must
be at least as large as t). The simulation-based approach
will not detect systematic genotyping errors in the anal-
ysis of affected individuals only, since the asymmetry in
misclassification of recombination seen in such an anal-
ysis is a result of ascertainment bias (i.e., in affecteds-
only analysis, one ascertains that the affected individ-
uals are similar with respect to disease-locus genotypes,
so that, when marker-locus genotypes are similar, an
asymmetry in misclassification results solely from the
ascertainment on trait-locus genotypes), which cannot
be estimated by such simulation procedures. This pro-
posed method only estimates the asymmetry in recom-
bination-status misclassification resulting from random
genotyping errors.

A contraction of the positive part of the distribution
toward 0 may also occur when the mode of inheritance
is assumed to be very weak (Göring and Terwilliger
2000c), as a result of the reduction in the variance of
the LOD-score statistic, compared with its theoretical
expectation. Asymptotically, this problem may dissi-
pate; however, in sample sizes that are as large as 1,000
sib pairs, an excessively weak penetrance ratio (as for-
merly advocated by Terwilliger and Ott 1994 [see sec-
tion 25.3]) leads to a significant contraction of the null
distribution (although not necessarily to an increase in
the size of the point mass at 0), since the effective num-
ber of equivalent meioses can be rendered quite small,
potentially causing a large deviation from the asymp-
totic distributions.

Discussion

Errors in genotyping of the marker loci are not infre-
quent. It is therefore important to understand the con-
sequences of high error rates in marker-locus genotypes
and to have a model in which these errors can be handled
mathematically, to minimize their consequences. In the
present study, marker-locus genotyping errors are han-
dled by adding additional “imaginary” components to
the recombination fraction. The results of the present
study, together with findings from a companion article
(Göring and Terwilliger 2000a), provide the basis for a
logical framework by which multipoint likelihoods can
be computed, allowing for errors in the genotype as-
signments at trait and marker loci jointly, with use of
all the available data to estimate these error rates in a
locus-specific manner. A summary of linkage analysis in
the presence of genotyping errors at both disease locus
and marker loci, under the described model, is shown
in figure 9. The method is applicable to both “model-
based” and “model-free” analyses, as described else-
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Figure 9 Overview of linkage analysis in the presence of ge-
notyping errors at trait and marker loci, under the outlined model for
higher-dimensional recombination fractions.

where (Göring and Terwilliger 2000c). Through the ap-
plication of this technique, the earlier admonition that
“one should not do multipoint analysis with a complex
trait because of the increased propensity for false-neg-
ative results when there are model misspecifications”
(Terwilliger and Ott 1994 [see p. 220]) need not be fol-
lowed, since we have demonstrated an equivalence be-
tween two-point LOD scores without allowing for mis-
classification errors and multipoint LOD scores in the
presence of misclassification errors at the trait locus (Gö-
ring and Terwilliger 2000a), a result that can be trivially
extended to marker-locus genotyping errors as well
(proof is available on request).

Since genotyping errors can affect multipoint LOD
scores more dramatically than they can affect two-point
LOD scores (as a result of the apparent deviation from
linearity of the map at both disease locus and marker
loci), traditional multipoint LOD scores may be lower
than traditional two-point LOD scores in the presence
of linkage, despite the use of more “information” in the
multipoint analysis. More information will only lead to
a more powerful test, if this additional information is
accurate. Errors in the genotypes of marker loci, much

like errors in the marker-locus map, can lead to false-
negative multipoint LOD scores, unless one allows for
such errors by use of a scheme such as the one proposed
in the present study. It is therefore not necessarily the
case that one most likely has a false-positive finding
when use of traditional multipoint statistics are less sig-
nificant traditional two-point statistics. In fact, such
findings may be expected in the presence of errors. Fur-
thermore, if 150% of the genome has a maximum LOD
score (or any other one-sided linkage test statistic) that
is 0, then a high rate of genotyping errors may be in-
dicated, and careful scrutiny of the data—as well as
skepticism of the conclusions—may be warranted.

An alternative option for handling errors in genotyp-
ing of the marker loci would be to model them directly,
through penetrances, rather than indirectly, through the
resulting misclassifications in recombination status (Ott
1985; Terwilliger et al. 1990; Lincoln and Lander
1992). Rather than using a one-to-one correspondence
between the readings of marker-locus genotypes (i.e.,
the marker phenotypes) and the true marker-locus gen-
otypes, one could specify penetrance functions similar
to those used for disease loci. Another option would be
to model errors in genotyping of the marker locus
through mutation rates (Ott 1985; Terwilliger et al.
1990). The described model does not deal with other
forms of marker-locus errors that are known to lead to
spurious results in linkage and linkage-disequilibrium
tests, such as incorrect specification of the marker-locus
allele frequencies (Ott 1992), incorrect specification of
marker-marker linkage disequilibria, and incorrect spec-
ification of the marker-locus order and intermarker ge-
netic distances. These difficulties can be dealt with by
treating the “offending” parameters as nuisance param-
eters, by use of profile likelihoods in the computation
of the LOD score (Göring and Terwilliger 2000b). Sim-
ilar treatment is advised for the marker-locus-specific
error vectors as well.

Acknowledgments

A Hitchings-Elion Fellowship from the Burroughs-Wellcome
Fund (to J.D.T.) is gratefully acknowledged, as is grant
HG00008 from the National Institute of Health (to Jürg Ott,
thesis advisor of H.H.H.G.).

Appendix

Derivation of Statistical Distribution of L in Terms of v, g, and t

In the absence of linkage, , assuming lack of any genotyping errors. Bearing in�L = (N � R)/ N � R ∼ N(0, 1)
mind that the total number of meioses, , is a constant, the mean and the variance of L are given byN � R
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1
[ ] [ ]E L = E N � R�N � R

N � R
[ ]= E N � R for a single meiosis�N � R

�= N � R[P(N )(1 � 0) � P(R )(0 � 1)]obs obs

�= N � R[1 � 2P(R )]obs

and

2[ ] ( )Var L =E{ L � E L }[ ]
2

1 2( )= (N � R) E{[ N � R �E(N � R)] for a single meiosis}( )�N � R
2 2( ) ( ) ( )= P(N ){ 1 � 0 � [1 � 2P(R )]} � P(R ){ 0 � 1 � [1 � 2P(R )]} since E N � R = 1 � 2P(R )obs obs obs obs obs

_

= 4P(R )[1 � P(R )] .obs obs

Since , where and ,2 2�L ∼ N (m, j ) m = E[L] = N � R[1 � 2P(R )] j = Var [L] = 4P(R )[1 � 2P(R )] (L �obs obs obs

, and the power (or the P value) for a given critical value c can be computed as�E [L])/ Var [L] ∼ N (0, 1)

( )c � E L
( ) ( )P L � c =1 � P L � c =1 � F[ ]� ( )Var L

�c � N � R[1 � 2P(R )]obs
= 1 � F ,{ }�4P(R )[1 � 2P(R )]obs obs

where F( ) is the cumulative-distribution function of a N(0, 1) random variable.
By substituting the value of P(Robs) for different parameter values ( , v, e, g, and t), the mean and varianceN � R

of L as well as the power or the P value can be determined for different situations. For example, under the null
hypothesis of no linkage ( ), when no genotyping errors exist at either the disease locus or the marker locusv = 0.5
( ), , so that and , and L is distributed as an N(0, 1) randome = g = 0 P(R ) = P(R ) = 0.5 E[L] = 0 Var [L] = 1obs true

variable (for any sample size that is sufficiently large for the asymptotic normal approximation to hold). The P
value for a cutoff point of (the equivalent of a LOD score of 3) would then be , andc = 3.72 1 � F(3.72) = 0.0001
the point mass at 0 would be , and the statistic would behave as expected (see Nordheim 1984; Tai andF(0) = 0.5
Chen 1989). (The point mass at 0 is given by , since the test is conducted in a one-sided manner—thatF(0) = 0.5
is, . Any negative value of L, however, corresponds to a value of , which is not consistent with theˆv � 0.5 v 1 0.5
alternative hypothesis of linkage. All negative values of L are therefore customarily truncated to 0—that is, the
maximum LOD score is 0 at recombination fraction 0.5.)
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